工程,项目,工程管理,项目管理,国际工程,项目经理,房地产,融资,可行性研究,总承包,信息化,代建制,招投标,设计管理,进度,成本,风险,质量,概预算,造价,合同管理,施工组织,监理,工程咨询,保险,劳务,FIDIC,索赔,BOT,PPP,PMC 中国工程管理网,关注工程的策划,建设与运营。 工程,项目,工程管理,项目管理,国际工程,项目经理,房地产,融资,可行性研究,总承包,信息化,代建制,招投标,设计管理,进度,成本,风险,质量,概预算,造价,合同管理,施工组织,监理,工程咨询,保险,劳务,FIDIC,索赔,BOT,PPP,PMC 中国工程管理网,关注工程的策划,建设与运营。
打印本文 打印本文  关闭窗口 关闭窗口  
浅析某水电站大坝裂缝存在对工程正常使用的影响
作者:佚名  文章来源:土木工程网  点击数  更新时间:2013/12/13 17:17:27  文章录入:web13741  责任编辑:web13741

  1、工程概况

  该水电站位于****省****县境内,是**江上游d**溪的一个梯级水电开发工程。坝址集雨面积为26.3Km2,电站装机3.2MW,为引水式电站,大坝为C15细砼砌石抛物线型双曲拱坝,坝顶高程为271.2m,最大坝高38.2m,坝顶中心线弧长123.8m,顶厚2.62m,底厚7.57m,厚高比0.198,拱圈最大中心角87.3°,最小中心角38.5°。该工程于2001年底动工兴建,至2003年底主体工程已基本完成。

  2003年12月13日~17日当地气温连续5天降至-2~-5℃,12月22日~25日连续4天降温至-1~-4℃。2003年12月17日15时左右,现场施工人员发现大坝左右岸坝体均出现裂缝,施工单位随即停止施工,设计人员在踏勘现场的基础上提出了裂缝处理意见。

  2、裂缝产生的原因

  根据相似工程实践经验,施工后期及运行期出现异常外部条件时出现裂缝仍是拱坝在应付各种不利工况时进行结构性调整的一种早期征兆,在绝大多数情况下无严重危害性,但是,裂缝的出现总是某种潜在的不利因素在起作用的结果,因此必须引起是够重视,注意其发展,寻找裂缝产生的原因。

  (1) 裂缝情况

  2003年12月17日,发现大坝左岸离坝轴线43m左右,右岸离坝轴线36m左右处各出现近竖直向裂缝,其中左岸2条,其中1#(5#)裂缝上、下游贯穿,裂缝范围为高程259m~271.2m,6#裂缝出现在下游面,范围为高程257.8~261.0m,上、下游没有贯穿;右岸三条裂缝,均上、下游贯穿,其中2#(7#)裂缝范围为251.4~265.4,3#(8#)裂缝范围为256.8~271.2m,4#(9#)裂缝范围为258.6~266.6m,裂缝宽大多为1mm左右。其中1#(5#)、3#(8#)两条裂缝由基岩垫层始至坝顶,其它几条由基岩垫层始向上发展至一定位置尖灭消失。裂缝宽度与气温关系密切,气温升高时,缝宽变小,气温降低时,缝宽变大。裂缝分布情况见图一和图二。

  裂缝发生前几天,遭遇寒潮,气温较低,2003年12月17日,当地气温最低为-5℃,再则,大坝主体工程刚刚完成还没有蓄水,属于非常不利的拱坝运行状况。

  

  

  (2) 裂缝成因分析

  为分析裂缝产生的原因,计算了水库空库+温降(-5℃)(设计温降工况为多年平均日最低气温1月份为7.7℃)运行工况的坝体应力情况,由于建筑大坝用的砼水灰比达到0.69(试验结果),大大高于规范要求的0.5~0.6的要求,坝体的线胀系数取0.0000090(原设计取0.0000080),封拱温度按实际施工时平均温度选取,计算成果见表1。

  由表1中知,在气温骤降(-5℃,大大低于设计温度7.7℃)及空库情况下,两坝肩的拉应力较大,最大值为2.74Mpa[2R,-7C],且拉应力区范围较广,两坝肩拉应力呈全断面分布,且上游面普遍大于下游面,而且可以看出,计算结果与实际产生裂缝位置较为吻合,由此,可得出裂缝产生的原因。

  引起坝体顶部竖向裂缝的主要原因是温度荷载,即拱坝在空库(或低水位)+温降情况下运行是产生坝顶裂缝的最不利荷载组合,而且该段坝体施工时最高温度达27.1℃,平均温度达到21℃,而短历时寒潮最低温度为-2~-5℃,最大温差超过20℃,而且坝顶厚度又较薄,坝体温度很快降至当时气温,实际产生的拉应力往往会大于计算值,从而在寒潮作用下产生近坝顶竖直裂缝。

  3、裂缝处理方案

  裂缝产生后,设计人员根据踏勘情况,提出了裂缝处理方案,裂缝将采用化学材料嵌缝和水泥灌浆相结合的处理方法。

  灌浆

[1] [2]  下一页

打印本文 打印本文  关闭窗口 关闭窗口